
第 07章：Recursive Function 
	

² Function 

As we have seen, many functions can naturally be defined in terms 
of other functions. 

 fac :: Int -> Int	

 fac n  =  product [1..n] 

 

² Recursive Function / 递归函数 

In Haskell, functions can also be defined in terms of 
themselves.  Such functions are called recursive. 

fac :: Int -> Int	

fac 0 = 1	

fac n = n * fac (n-1) 

 

² Why Recursive Function ？ 

¡ Some functions, such as factorial, are simpler to define in 
terms of other functions.	

¡ As we shall see, however, many functions can naturally be 
defined in terms of themselves. 

¡ Properties of functions defined using recursion can be proved 
using the simple but powerful mathematical technique of 
induction. 

 

² Recursive Function on List 

Recursion is not restricted to numbers, but can also be used to 
define functions on lists. 

product :: Num a => [a] -> a	

product []  =  1	

product (n:ns)  =  n * product ns 

 



Using the same pattern of recursion as in product we can define 
the length function on lists. 

length :: [a] -> Int	

length []  =  0	

length (_:xs)  =  1 + length xs 

 

Using a similar pattern of recursion we can define the reverse 
function on lists. 

reverse :: [a] -> [a]	

reverse []  =  []	

reverse (x:xs)  =  reverse xs ++ [x] 

 

² Example: 插入排序 

isort :: Ord a => [a] -> [a]	

isort []  =  []	

isort (x:xs)  =  insert x (isort xs) 

 

insert :: Ord a => a -> [a] -> [a]	

insert x []  =  [x]            	

insert x (y:ys) | x <= y  =  x:y:ys	

insert x (y:ys) | otherwise  =  y:(insert x ys) 

 

² 多参数递归 

Functions with more than one argument can also be defined using 
recursion. 

 

Example: Zipping the elements of two lists 

zip :: [a] -> [b] -> [(a,b)]	

zip [] _  =  []	

zip _ []  =  []	

zip (x:xs) (y:ys)  =  (x,y) : zip xs ys 



 

Example: Remove the first n elements from a list 

drop :: Int -> [a] -> [a]	

drop 0 xs  =  xs	

drop _ []  =  []	

drop n (_:xs)  =  drop (n-1) xs 

 

Example: Appending two lists 

(++) :: [a] -> [a] -> [a]	
[] ++ ys  =  ys	
(x:xs) ++ ys  =  x : (xs ++ ys) 

 

² Multiple Recursion	

Functions can also be defined using multiple recursion, in which a 
function is applied more than once in its own definition. 

 

fib :: Int -> Int 	
fib 0 = 0 	
fib 1 = 1 	
fib n = fib (n - 2) + fib (n - 1) 

	

qsort :: Ord a => [a] -> [a]	
qsort []  =  []	
qsort (x:xs)  =  qsort smaller ++ [x] ++ qsort larger	
  where	
    smaller = [a | a <- xs, a <= x]	
    larger  = [b | b <- xs, b >  x] 
=== qsort [3,2,4,1,5] 

=== qsort [2,1]+ [2] ++ qsort [] ++  [3]  ++  qsort [4,5] 

=== qsort [1] ++ [2] ++ qsort [] ++  [3]  ++  qsort [] ++ [4] ++ qsort 
[5] 

=== qsort [1] ++ [2] ++ qsort [] ++  [3]  ++  qsort [] ++ [4] ++ qsort 
[5] 

 



² Mutual Recursion	

Functions can also be defined using mutual recursion, in which two 
or more functions are all defined recursively in terms of each 
other. 

even :: Int -> Bool 	
even 0 = True 	
even n = odd (n-1) 	
	
odd :: Int -> Bool 	
odd 0 = False 	
odd n = even (n-1) 

 

	
 

作业 01 

Without looking at the standard prelude, define the following 
library functions using recursion: 

1. Decide if all logical values in a list are true 

and :: [Bool] -> Bool 

2. Concatenate a list of lists 

concat :: [[a]] -> [a] 

3. Select the nth element of a list (starting from 0) 

(!!) :: [a] -> Int -> a 

4. Produce a list with n identical elements 

replicate :: Int -> a -> [a] 

5. Decide if a value is an element of a list 

elem :: Eq a => a -> [a] -> Bool 



	
 

	
 

作业 02 

Define a recursive function 

     merge :: Ord a => [a] -> [a] -> [a] 

that merges two sorted lists of values to give a single sorted 
list. 

For example: 

ghci> merge [2,5,6] [1,3,4]	
[1,2,3,4,5,6] 

作业 03 

Define a recursive function 

     msort :: Ord a => [a] -> [a] 

that implements merge sort, which can be specified by the 
following two rules: 

A. Lists of length <= 1 are already sorted; 

B. Other lists can be sorted by sorting the two halves and merging 
the resulting lists 


