
第 07章：Recursive Function
	

² Function

As we have seen, many functions can naturally be defined in terms
of other functions.

 fac :: Int -> Int	

 fac n = product [1..n]

² Recursive Function / 递归函数

In Haskell, functions can also be defined in terms of
themselves. Such functions are called recursive.

fac :: Int -> Int	

fac 0 = 1	

fac n = n * fac (n-1)

² Why Recursive Function ？

¡ Some functions, such as factorial, are simpler to define in
terms of other functions.	

¡ As we shall see, however, many functions can naturally be
defined in terms of themselves.

¡ Properties of functions defined using recursion can be proved
using the simple but powerful mathematical technique of
induction.

² Recursive Function on List

Recursion is not restricted to numbers, but can also be used to
define functions on lists.

product :: Num a => [a] -> a	

product [] = 1	

product (n:ns) = n * product ns

Using the same pattern of recursion as in product we can define
the length function on lists.

length :: [a] -> Int	

length [] = 0	

length (_:xs) = 1 + length xs

Using a similar pattern of recursion we can define the reverse
function on lists.

reverse :: [a] -> [a]	

reverse [] = []	

reverse (x:xs) = reverse xs ++ [x]

² Example: 插入排序

isort :: Ord a => [a] -> [a]	

isort [] = []	

isort (x:xs) = insert x (isort xs)

insert :: Ord a => a -> [a] -> [a]	

insert x [] = [x] 	

insert x (y:ys) | x <= y = x:y:ys	

insert x (y:ys) | otherwise = y:(insert x ys)

² 多参数递归

Functions with more than one argument can also be defined using
recursion.

Example: Zipping the elements of two lists

zip :: [a] -> [b] -> [(a,b)]	

zip [] _ = []	

zip _ [] = []	

zip (x:xs) (y:ys) = (x,y) : zip xs ys

Example: Remove the first n elements from a list

drop :: Int -> [a] -> [a]	

drop 0 xs = xs	

drop _ [] = []	

drop n (_:xs) = drop (n-1) xs

Example: Appending two lists

(++) :: [a] -> [a] -> [a]	
[] ++ ys = ys	
(x:xs) ++ ys = x : (xs ++ ys)

² Multiple Recursion	

Functions can also be defined using multiple recursion, in which a
function is applied more than once in its own definition.

fib :: Int -> Int 	
fib 0 = 0 	
fib 1 = 1 	
fib n = fib (n - 2) + fib (n - 1)

	

qsort :: Ord a => [a] -> [a]	
qsort [] = []	
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger	
 where	
 smaller = [a | a <- xs, a <= x]	
 larger = [b | b <- xs, b > x]
=== qsort [3,2,4,1,5]

=== qsort [2,1]+ [2] ++ qsort [] ++ [3] ++ qsort [4,5]

=== qsort [1] ++ [2] ++ qsort [] ++ [3] ++ qsort [] ++ [4] ++ qsort
[5]

=== qsort [1] ++ [2] ++ qsort [] ++ [3] ++ qsort [] ++ [4] ++ qsort
[5]

² Mutual Recursion	

Functions can also be defined using mutual recursion, in which two
or more functions are all defined recursively in terms of each
other.

even :: Int -> Bool 	
even 0 = True 	
even n = odd (n-1) 	
	
odd :: Int -> Bool 	
odd 0 = False 	
odd n = even (n-1)

	

作业 01

Without looking at the standard prelude, define the following
library functions using recursion:

1. Decide if all logical values in a list are true

and :: [Bool] -> Bool

2. Concatenate a list of lists

concat :: [[a]] -> [a]

3. Select the nth element of a list (starting from 0)

(!!) :: [a] -> Int -> a

4. Produce a list with n identical elements

replicate :: Int -> a -> [a]

5. Decide if a value is an element of a list

elem :: Eq a => a -> [a] -> Bool

	

	

作业 02

Define a recursive function

 merge :: Ord a => [a] -> [a] -> [a]

that merges two sorted lists of values to give a single sorted
list.

For example:

ghci> merge [2,5,6] [1,3,4]	
[1,2,3,4,5,6]

作业 03

Define a recursive function

 msort :: Ord a => [a] -> [a]

that implements merge sort, which can be specified by the
following two rules:

A. Lists of length <= 1 are already sorted;

B. Other lists can be sorted by sorting the two halves and merging
the resulting lists

